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Appendix 
Cartesian Coordinate transformation (3D and 2D)

MATLAB function for 3D and 2D coordinate transformation with dual quaternion 
https://www.mathworks.com/matlabcentral/fileexchange/90711-dual-quaternions-3d-transfor mation?s_tid=srchtitle

[q,L,T,angles,res,so,Cqq,Cpar,xyz_new]=DQA_3d_transformation_new5(xyz1,xyz2,P)
%
% DQA_3d_transformation (similarity) with dual quaternions
% reverse and direct problem
% Model: xyz2=(2*w_r'*d)+(w_r'*Q_r*xyz1)  
% function performs both reverse and direct problem-solving based on dual quaternions between two 3D Cartesian coordinate system
% The function can also 2D transformation between given coordinate systems.
% INPUT:
% n :number of control points
% xyz1 = nx3 start system coordinate matrix ([x1 y1 z1])[in meter]
% xyz1 contain [ n control points xyz1]
%       | x1 y1 z1 |
%  xyz1=| x2 y2 z2 |
%       | ........ |
%       | xn yn zn |
% xyz2 = nx3 target system coordinate matrix ([x2 y2 z2])[in meter]
% xyz2 contain [ n control points xyz2 ]
%       | X1 Y1 Z1 |
%  xyz2=| X2 Y2 Z2 |
%       | ........ |
%       | Xn Yn Zn |
%  if there are new point to be transformed (revers problem+direct problem)
% xyz1 = mx3 start system coordinate matrix
% the new points are added under the control points in the xyz1 matrix.
% m :number of total points (control points+new points to be transformed)
%       | x1    y1    z1 |==>control points
%       | x2    y2    z2 |==>control points
%       | .............. |==>control points
%  xyz1=| xn    yn    zn |==>control points
%       | xn+1 yn+1 zn+1 |==>new points  
%       | .............. |==>new points
%       | xm   ym   zm   |==>new points
% (m-n)= new points to be transformed (if any) ]
% FOR 2D TRANSFORMATIONS
% All of Z1 and Z2 coordinates must be entered as zero.
% P = nx1 weighted of points 
% m-n : number of new points to be transformed
% m must be greater than or equal n (m>=n)
% if m=n there is no new point to be transformed (revers problem)
% if m>n there is new point to be transformed (revers problem+direct problem)
% last (m-n) rows of the xyz1 matrix belong to the coordinates of the new 
% points to be converted.
%  OUTPUT:
% q = dual quaternion elements [r0 r1 r2 r3 s0 s1 s2 s3] [unitless]
% L = scale factor [unitless]
% T = translation vector (Tx,Ty,Tz)[in meter]
% angles = (e,p,w) rotation angles (x,y,z) [in radian]
% res = residual of coordinates [in meter]
% so = standard error of transformation [in meter]
% Cqq = covariance matrix of quaternions
% (r0,r1,r2,r3,s0,s1,s2,s3)respectively
% Cpar = covariance matrix of transformation parameters
% (L,e,p,w,tx,ty,tz,0)respectively
%
% xyz_new=(m-n)x3 matrix is the coordinates of the new points calculated in the target system.  (if m>n)
% xyz_new=[]  (if m=n)
%==========================================================================
%==========================================================================
% SAMPLE INPUT DATA For 3D Transformations
% n=4 number of control point
% m=5 number of row of xyz1 
% m-n=1 number of new point to be converted (if any)
% xyz1=[ 6432.5800 7254.1200 200.6000 
%        6354.3700 5724.5800 174.5700 
%        7221.4400 6355.0800 254.5800 
%        6433.5800 7255.1200 201.6000 
%        6533.5800 7055.1200 211.6000 ] this row belong to new points to be converted.
% xyz2=[ 4208.8321 2111.9343 4182.9434 
%        2034.5929 2073.9091 4924.8221 
%        3397.0341 1919.6811 5773.1190 
%        4207.7300 2110.9400 4182.1100 ] 
%
% P=[1 2 2 4] weight
%======================================
% SAMPLE INPUT DATA For 2D Transformations
% n=4 number of control point
% m=5 number of row of xyz1 
% m-n=1 number of new point to be converted (if any)
%  xyz1=[  9043.7400    5208.7900       0      
%    	   9218.4200    4833.4900       0   
%    	   9000.0000    5000.0000       0   
%    	   9220.0200    5166.9100       0   
%          9242.7000    5039.3800       0   
%          9106.1700    5050.7100       0] this row belong to new points to be % converted.
%  xyz2= [ 4618.7200    4068.8300       0
%          5579.4100    1115.6000       0
%          4103.9800    2553.3800       0   
%    	   5893.3800    3597.0300       0   
%    	   5946.7000    2626.7000       0 ]
% P=[1 1 1 1] weight
% ======================================================
% Please refer to:
% 
% Bektas, S.(2023) An expanded dual quaternion algorithm for 3D Helmert %transformation and determination of the VCV matrix of the transformation’s %parameters. Journal of Spatial Science, DOI: 10.1080/14498596.2023.2274997
% Bektas, S.(2017) Adjustment Calculus,Ondokuz Mayis University press,
% ISBN 975-7636-54-1 Samsun,Turkey 
%
%==========================================================================
% written by Sebahattin BEKTAS January 2023
% sbektas@omu.edu.tr
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6.2. Numerical example 2 (large rotation angles and large scale factor)

Second data with four points chosen from Bektas (2017), the 3D coordinates of the control
point in (xy2) first and (XYZ) second systems and point weight are listed in Table 4.

Actually, this dataset has three control points. A fourth point was added to the data set
to show the performance of the proposed method. The coordinates of the fourth point
were obtained by contaminating the first point coordinates. The weights of the points are
also exaggeratedly different. As a result, a corrupted data set was obtained.

In this second example, as in the frst example, the transformation problem was solved
using four different methods. Although the dataset used in the second example was
cormupt, it was observed that the results were perfectly consistent in all methods.

‘The results are summarized in Table 5. The residuals are shown in Table 6.

Table 5. Computed parameters and precision statistics of the Helmert 3D transformation
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4. Functional model (new and expanded)

‘The dual quaternion 3D transformation’s functional model, as described by Zeng et al.
(2018, Equation 31), loannidou and Pantazis (2020, Equation 12), Wang et al. (2014,
Equation 14),s as follows:

X =2ws + wl,Qux . an

Asa matter of fact, this model is considered when designing the functional model of the
previous study (Bektas 2022, Equation (24)).
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is the scale parameter from the first to the second coordinate system.

After the previous article was published, we saw that the VCV matrix calculation
was missing in the DQA model. As it is wel-known, the uncertainties of unknown
parameters can be made over the VCV matrix. VCV matrices are necessary for trans-
formation problems because outlers could be detected and error analysis established.
‘The question of how to calculate the VCV matrix in the DQA model came to our mind.
The interesting thing i that the current and existing models in the literature Equation
(1) did not allow VCV matrix calculation. As 2 matter of fact, until that date, no one
had been able to calculate the VCV matrix in the DQA model. When we investigated
the issue, we found that there was confusion in the current functional model. In the
current and existing model Equation (11), the scale coefficient () is included as an
independent parameter. On the other hand, there are r quaternions in the Wy, and Q;,
matrices in the model, and the scale coefficient () can be calculated directly from
these r quatemion (A = ro? + 1% + 1,7 +152). We evaluated that this situation created
confusion in the functional model. In our new functional model Equation (14), we
removed the scale coefficient () and expanded the model by adding a constraint
equation(r’s = 0). Now, with the new model, VCV matrix calculation could be done
easily (section 5),
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A constraint equation is given by
rs=o

Our transformation model Equation (14) requires four equations per control point. Explicit
writing of Equation (14) will give us Equaions (15-18):
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(i=1,23.n) (n: number of control points).
We write one additional constraint equation Equation (19) to ensure the r's=0
condition,

Sofy + $i13 + Sar3 + 315 = 0. (19)

‘The solution of this model, Equation (14) and Equation (19) will give us the scaled
quaternions.

In this case, our total number of equations is m = 4n+1.

‘The unknown parameters in the dual quaternion 3D transformation model are qua-
ternions and their number s eight.

‘The functional model, consisting of nonlinear equations, needs to be linearized con-
ceming the quaternions (0,172, 73.5051,52,53)

‘The approximate values of the quaternions required for linearisation can, in any case,
be taken as follows:

o p=0  (i=1.23)

S0 (1-01.2.3).
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‘These adjusted transformation parameters are used when calculating new points. It
should be noted that the quaternions (r, s) calculated from this algorithm are scaled
quaternions. To find their normalized values(73),itis necessary to divide r quaternions and
multiply s quaternions as below from Equation (30).

A=n/A H=sA  (i=0123) 30)

7 is called the unit quatemion. The norm of unit quaternions is always
one @+R+R+HE =1

4.1. Transformation of coordinates of new points

After calculating the transformation parameters (eight quaternions), it is possible to
transform the coordinates of the new points in two ways.

a) using scaled quaternion via Equation (14)
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b) using unit quaternion

Reconstructing the matrices W(7) and Q(7) using unit quaternions by Equation (10),

1)

o< x

v s
0le, »

Itis seen that itis possible to calculate the transformation parameters and transform the
coordinates of the new points to the second system only using scaled quaternions.





